The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis

نویسندگان

  • Patrícia Santos-Oliveira
  • António Correia
  • Tiago Rodrigues
  • Teresa M. Ribeiro-Rodrigues
  • Paulo Matafome
  • Juan Carlos Rodríguez-Manzaneque
  • Raquel Seiça
  • Henrique Girão
  • Rui D. M. Travasso
چکیده

Sprouting angiogenesis, where new blood vessels grow from pre-existing ones, is a complex process where biochemical and mechanical signals regulate endothelial cell proliferation and movement. Therefore, a mathematical description of sprouting angiogenesis has to take into consideration biological signals as well as relevant physical processes, in particular the mechanical interplay between adjacent endothelial cells and the extracellular microenvironment. In this work, we introduce the first phase-field continuous model of sprouting angiogenesis capable of predicting sprout morphology as a function of the elastic properties of the tissues and the traction forces exerted by the cells. The model is very compact, only consisting of three coupled partial differential equations, and has the clear advantage of a reduced number of parameters. This model allows us to describe sprout growth as a function of the cell-cell adhesion forces and the traction force exerted by the sprout tip cell. In the absence of proliferation, we observe that the sprout either achieves a maximum length or, when the traction and adhesion are very large, it breaks. Endothelial cell proliferation alters significantly sprout morphology, and we explore how different types of endothelial cell proliferation regulation are able to determine the shape of the growing sprout. The largest region in parameter space with well formed long and straight sprouts is obtained always when the proliferation is triggered by endothelial cell strain and its rate grows with angiogenic factor concentration. We conclude that in this scenario the tip cell has the role of creating a tension in the cells that follow its lead. On those first stalk cells, this tension produces strain and/or empty spaces, inevitably triggering cell proliferation. The new cells occupy the space behind the tip, the tension decreases, and the process restarts. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of forces in sprouting, hence underlining the necessary collaboration between modelling and molecular biology techniques to improve the current state-of-the-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression

Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...

متن کامل

Morphogenetic Mechanisms of Endothelial Cells During Lumen Formation in Sprouting Angiogenesis

Different mechanisms such as cell migration, proliferation, branching, anastomosis, and lumen formation occur during the angiogenesis process. Lumen formation is one of the critical mechanisms which is not only necessary for the functional plexus but also for continuing of angiogenesis process. Although multiple studies investigated this mechanism during the angiogenesis process in both in vivo...

متن کامل

Homocysteine Facilitates Prominent Polygonal Angiogenetic Networks of a Choroidal Capillary Sprouting Model.

Purpose To investigate the effects of homocysteine on choroidal angiogenesis, we established an ex vivo choroidal sprouting explant model and examined the potential growth factors for angiogenesis. Methods Choroid fragments with retinal pigment epithelium were isolated from mouse and embedded in Matrigel. Homocysteine at different concentrations were added to the culture mediums. The choroida...

متن کامل

Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis

Angiogenesis, the recruitment of new blood vessels, is a critical process for the growth, expansion, and metastatic dissemination of developing tumors. Three types of cells make up the new vasculature: tip cells, which migrate in response to gradients of vascular endothelial growth factor (VEGF), stalk cells, which proliferate and extend the vessels, and phalanx cells, which are quiescent and s...

متن کامل

Angiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells

Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015